Weak Approximation of Stochastic Differential Equations and Application to Derivative Pricing

نویسندگان

  • SYOITI NINOMIYA
  • N. VICTOIR
چکیده

where B = ( B1, · · · ,Bd ) is a standard Brownian motion, and Cb ( RN;RN ) denotes the set of RN-valued smooth functions defined over RN whose derivatives of any order are bounded. In particular, we will use the classical notation V f (x) = ∑N i=1 V i (x) ( ∂ f/∂xi ) (x) for V ∈ Cb (RN;RN) and f a differentiable function from Rn into R. This stochastic differential equation can be written in Itô form:

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An extension of stochastic differential models by using the Grunwald-Letnikov fractional derivative

Stochastic differential equations (SDEs) have been applied by engineers and economists because it can express the behavior of stochastic processes in compact expressions. In this paper, by using Grunwald-Letnikov fractional derivative, the stochastic differential model is improved. Two numerical examples are presented to show efficiency of the proposed model. A numerical optimization approach b...

متن کامل

Approximation of stochastic advection diffusion equations with finite difference scheme

In this paper, a high-order and conditionally stable stochastic difference scheme is proposed for the numerical solution of $rm Ithat{o}$ stochastic advection diffusion equation with one dimensional white noise process. We applied a finite difference approximation of fourth-order for discretizing space spatial derivative of this equation. The main properties of deterministic difference schemes,...

متن کامل

APPROXIMATION OF STOCHASTIC PARABOLIC DIFFERENTIAL EQUATIONS WITH TWO DIFFERENT FINITE DIFFERENCE SCHEMES

We focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of It¨o type, in particular, parabolic equations. The main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.

متن کامل

Application of DJ method to Ito stochastic differential equations

‎This paper develops iterative method described by [V‎. ‎Daftardar-Gejji‎, ‎H‎. ‎Jafari‎, ‎An iterative method for solving nonlinear functional equations‎, ‎J‎. ‎Math‎. ‎Anal‎. ‎Appl‎. ‎316 (2006) 753-763] to solve Ito stochastic differential equations‎. ‎The convergence of the method for Ito stochastic differential equations is assessed‎. ‎To verify efficiency of method‎, ‎some examples are ex...

متن کامل

A continuous approximation fitting to the discrete distributions using ODE

The probability density functions fitting to the discrete probability functions has always been needed, and very important. This paper is fitting the continuous curves which are probability density functions to the binomial probability functions, negative binomial geometrics, poisson and hypergeometric. The main key in these fittings is the use of the derivative concept and common differential ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005